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Abstract 

Measles disease is one of the biggest communicable diseases and is still responsible for 2.598 

million deaths every year. In this regard, our research focuses on measles disease transmission 

dynamics and the impact of indirect contact rates on the environment. In this paper, we propose a 

nonlinear mathematical model for measles disease and analyze a deterministic epidemiological 

measles model for control of the disease using vaccination. Here we executed the equilibrium 

points of the model, and we got two equilibrium points, namely, a disease-free equilibrium point 

(DEFP) and a unique endemic equilibrium point (EEP), and we also analyzed the local stability of 

DFEP and EEP by center manifold theory. Here we have also shown the global stability of DFEP 

and EEP by theCastillo-Chavez criterion and Lasalle invariant principle, respectively. In this study, 

we executed the basic reproduction number. if the basic reproduction number is less than unity 

otherwise the system shows a significant outbreak. Numerical illustrations demonstrate that if the 

rate of environmental contamination increased, then the number of infected people also increased. 

But if the environment is disinfected by sanitization then the number of infected people cannot 

drastically increase. 

1 Introduction 

Since the day of creation, humans have been in danger due to different types of epidemic 

outbreaks. Measles, a highly contagious respiratory illness caused by the rubeola virus, continues 

to threaten global public health despite the availability of a safe and effective vaccine. The disease 

is easily spread through the air when an infected person sneezes, coughs, and talks, and can remain 

in the air for up to two hours [1]. It is a virus of paramyxovirus family, genus morbilivirus, which 

is found only in the human body among all animal species. Measles is spread easily from person 

to person, and an individual can contract the virus by breathing in air contaminated with the virus 

or by touching a surface contaminated with the virus and then touching their mouth, nose or eyes 

[2]. The symptoms of an individual caused by a virus are such as fever and cough runny nose and 

red and watery eyes that usually appear that usually develop 10-12 days after exposure to an 

infectious person. In severe cases, it can lead to complications such as pneumonia, encephalitis, 

and deafness. This disease is more dangerous for children under five years of age and adults older 

than 20 years of age. There is no specific treatment for measles inspite of availability of a safe and 
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cost-effective vaccine Today, measles is a common and fatal disease in the world. It spreads 

person to person at a high rate of over 90% among vulnerable people, such as young children, 

pregnant women, and those with weak immune systems due to the mode of transmission and 

infectious properties. Some vaccines, including two doses of MMR (measles, mumps, and 

rubella), are nearly 100% effective at preventing measles and will protect 99% of people from 

measles. This means that a person must get both doses in order to receive the full benefits of the 

vaccine. But once a person recovers, they will not be able to get measles again. The measles 

vaccine is safe, effective, and expensive. 

Mathematical modelling has played an important role in understanding how to predict the 

spread of measles. In [3], a mathematical model was presented using the real incidence data from 

pakistan. The study found stability conditions(depending on R0) proposed a strategy to control 

spread, calculated the sensitivity of R0, and suggested ways to improve vaccine efficacy and 

coverage. The authors of [4] studied a modified SVEIR measle model to control measle outbreak 

in Bangladesh with double dose vaccination. They found that two equilibria exist: disease-free and 

endemic, and the latter persists if R0 remains above one. A mathematical model to examine the 

impact of preventive measures on the control of measles is studied in [5] and they have shown that 

the disease free state is globally stable if the reproduction number R0 ≤ 1, meaning the measles will 

die out eventually. However when R0 >1, the disease will spread. Bai and Liu [6] studied a discrete 

time measles model with a periodic transmission rate by using the basic reproduction number as 

the threshold for disease persistence. Xue et al. [7] used the model to investigate the periodic 

outbreak in mainland china, they recommended enhancing vaccination and implementing an 

optimal control system to minimize infections. The authors of [8] analyzed the seasonal spread of 

measles in china using a mathematical model, that was used to analyze the dynamics of the disease 

depending on R0, and to simulate the monthly data of reported cases of measles in china. [9] 

carried out a study on predicting and preventing of measles disease epidemics in New Zealand. In 

their work they used a deterministic SIR model to model the dynamics of measles disease under 

varying immunization strategies in a population with size and age structure. 

In this paper, in section 2, we proposed a deterministic mathematical model. In section 3, we 

have done positivity and boundedness of the model system.In section 4, executed equilibrium 

points. In section 5, we have done, existence and uniqueness of solution of the system. Also basic 

reproduction number of the system is executed in this section. In section 6, local stability of 

disease free equilibrium point is analyzed along with existence of endemic equilibrium point and 

local stability of endemic equilibrium point are done. Persistence of the system is also verified in 

this section. Here we analyzed global stability of disease free equilibrium point.In section 7, we 

have also shown the global stability of endemic equilibrium point. In addition, in section 8, 

numerical simulations are done and in the 

2 Mathematical Model Formulation 

In this section, we proposed a deterministic model clarified by contaminated environment to 

investigate measles transmission dynamics. The total human individuals at t represented by N(t) is 

classified into four subpopulation, Susceptible S(t), Vaccinated V(t), Infected I(t), Recovered R(t) 

i.e N(t)=S(t)+V(t)+I(t)+R(t). To show that measles can be minimized by maintaining the 

contaminated environment, we incorporate another important subclass of contaminated 
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environment C(t), To better understand, the transmission dynamics of measles virus, some 

investigation are focused on the contaminated environment, C(t). Daily recruitment into the 

susceptible class is at a rate Λ. Individual in the susceptible class receive a vaccination at a rate γ 

and lose immunity at rate α. The transmission rate of susceptible individuals is β, and the force of 

infection term is βSI. The interaction rate at which susceptible population with contaminated 

environment is ψ. Natural mortality rate of all subpopulation is δ. τ is the rate at which vaccinated 

population becomes infected. η is the mortality rate caused by measles. The rate at which infected 

population become recovered is ω. µ is the mortality rate of infected population caused by 

measles. η is the rate at which vaccinated individual becomes recovered. κI is the infected 

individual that makes environment contaminated at rate κ and δcis the rate at which contaminated 

environment become uninfected. 

S - Susceptible, V - Vaccinated, I - Symptomatic Infected, R - Recovered, C - environmental 

contamination δc= while the removal of infection from the market is given by 

  (1) 

with non negative initial value 

S(t0) = S0 >0,V(t0) = V0 ≥ 0,I(t0) = I0 ≥ 0,R(t0) = R0 ≥ 0,C(t0) = C0 ≥ 0, (2) 

Infectious individuals in the I classes contaminate the environment with measles at the rates κ. 

The virus is cleared from the contaminated environment at the rate δc. 

 

Figure 1: Schematic diagram of the mathematical model for the transmission dynamics of the 

Measles Infection. 
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3 Mathematical analysis 

3.1 Feasibility of the model 

Theorem 1. The system (1) is invariant in  

Proof. From our system (1) we observe that 

, 

Hence  is an invariant set. 

 

3.2 Positivity 

Theorem 2. If the solutions of (1) with initial values (2) satisfying S(t) >0,V(t) >0,I(t) >0,R(t) 

>0,C(t) >0 for all t >0.Then the system (1) is positively invariant and attracting in . 

Proof. First equation of system (1) we can be written as 

 

Thereafter by integration, we obtain the following equation 

. 

Which is positive as S(t0) ≥ 0 for t >0. 

Further from the second equation of the system (1) we can get 

 

Which leads to 

. 

Which implies that V (t0) ≥ 0 for t >0. 

In similar way from third equation of system (1) we get 

 

So, 

. 
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Therefore I(t) >0 as I(t0) ≥ 0 for t >0. 

From fourth equation of system (1) 

 

Which leads to R(t) >0 as R(t0) ≥ 0 for t >0. Again similarly 

 

. 

Therefore C(t) >0 as C(t0) ≥ 0 for t >0. Thus all the solutions of system 

(1) remain non-negative for all finite time, that is, for all t >0 Hence proof.  

3.3 Boundedness 

In this subsection we study the boundedness of the system (1) as none of the population can not 

grow unboundedly. To do this we state the theorem that assured that the solutions of system (1) is 

bounded if we start with non-negative initial conditions. 

Theorem 3. All the solutions of (1) with non-negative initial values (2) that starts in  are 

uniformly bounded in the Θ, where Θ is defined in the proof. 

Proof. Here we shall show that all the feasible solutions are uniformly bounded in Θ. From the 

positivity of solutions, it is clear that 

 

Which implies that 

. 

Adding the first four equation (N = S + V + I + R) yields 

 

So 

. 

Now from last equation, 
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This implies that 

. 

So we get positively invariant set 

. 

Therefore the solutions in  will enter and remain in the region Θ for all finite time. Thus the 

dynamics of system (1) can be considered in Θ.Hence the system is well-posed and biologically 

realistic.  

4 Equilibrium point 

There are two types of equilibria of the system (1), namely 

(a) The disease free equilibria E0(S0,V0,0,R0,0), where 

 

(b) The interior equilibrium point E∗= (S∗,V∗,I∗,R∗,C∗) 

4.1 Existence and Uniqueness of solution 

The general first-order ODE is in the form: 

x
′ 
= f(t,x),x(t0) = x0 

One will be interested in asking the question that under what condition there exist an unique 

solution. To answer these, let 

f1 = Λ − βSI − ξCS+ αV − (γ + δ)S,  

f2 = γS− τβIV − (α + η + δ)V,  

f3 = βSI + ξCS+ τβIV − (ω + µ + δ)I, (3) 

f4 = ωI+ ηV− δR,  

f5 = κI− δcC,  
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we show that: 5 are continuous and bounded i.e the partial derivatives are 

continuous and bounded. 

Therefore 

, 

We have established that all these partial derivative are continuous and bounded. Hence we can 

say that there exist a unique solution. 

5 Basic reproductive number of the model 

The Basic reproductive number (R0) is the average number of secondary infections caused by a 

single infectious individual during their entire infectious lifetime. This number is dimensionless 

and calculated at the DFE by the next generation matrix method. In the present work, We derived 

the threshold quantity known as reproductive number which is denoted by (R0). For this we 

assemble the compartments which are infected from system (1), and decomposing the right hand 

side as -, where transmission part, expressing the production of new infection, and the transition 

part, describe the change in state. It can be represented by the spectral radius of the largest 

magnitude of the next generation matrix. According to the system in model (1) there are two 

infectious compartments with (2 × 2) matrices. 

. 

where 

f1 = βSI + ξCS+ τβIV, v1 = (ω + µ + δ)I, f2 = 0, v2 = 

−κI+ δcC. 

Our system (1) defined as follows 
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 and  . 

Now F and V can be written as 

. 

Thus the mathematical definition of Basic reproductive number is the 

largest eigen value of the next generation matrix FV 
−1

 

 

 

6 Stability analysis of the model equilibria 

6.1 Local stability of disease free equilibrium point 

Theorem 4. The disease free equilibrium point E0(S0,V0,0,R0,0) of system (1) is locally 

asymptotically stable if R0 <1 and unstable if R0 >1. 

Proof. To determine the local stability of E0, we compute the Jacobian matrix of the system (1) 

around E0. 

The characteristic equation of Jacobian matrix at E0 is det(JE0 − λI5) = 0. 

(λ + δ)(λ + γ + δ)(λ + η + δ + α){(βS0 + τβV0 − ω − µ − δ − λ)(−δc− λ) − ξκS0} = 0 

From the above expression three eigen values are -δ, -γ −δ, -α−η−δ and other two eigen values can 

be expressed in the for as follows: 

 
By resetting the above equation, we have 

 

Let us consider λ = x + iywith Re(λ) ≥ 0, we have 
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From the above expression, we can write that R1(0) = B(0) = R0 <1, which leads to the form |R1(λ)| 

≤ 1. Therefore for the basic reproduction number R0 <1, all the eigen values corresponding to the 

characteristic equation B(λ) = 1 are all real and no imaginary roots. Thus for R0 <1, all eigen 

values have negative real parts and so the disease-free equilibrium point is locally asymptotically 

stable. Now we consider the case when basic reproduction number R0 >1, that is, B(0) >1, which 

indicates the fact that 

limB(λ) = 0. 

λ→∞ 

Then there exist atleast one eigen value λs>0 in such a way that B(λs) = 1. This implies that there 

exist atleast one nonnegative eigen value λs>0 for the variational matrix JE0. Thus the disease-free 

equilibrium point is unstable for 

R0 >1.  

6.2 Existence of Endemic equilibrium point 

The endemic equilibrium point (EEP) is evaluated by considering all the state variables must not 

be zero at the equilibrium state which means EEP E∗= (S∗,V∗,I∗,R∗,C∗) and equating all the 

equations of the model to be zero. Thus the Endemic Equilibrium Point E∗as follows: 

, 

where I∗is the positive root of the equation 

AI∗
2 
+ BI∗+ D = 0, 

where 

 
So we get a positive root of I∗if D <0 which means R0 >1 where 

 

Theorem 5. The endemic equilibrium E∗of the system (1) is locally asymptotically stable if R0 >1. 

Proof. Introducing x1 = S(t),x2 = V (t),x3 = I(t),x4 = R(t),x5 = C(t) the system (1) 

becomes 
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with R0 = 1 and choosing the bifurcation parameter β the Jacobian matrix 

around DFEP E0 at the threshold point  is given by 
 

−γ − δ 

 γ 

JE0 =  0 

 0 

 

0 

α 

−α − η − δ 

0 

η 

0 

−β∗x1 

−τβ∗x2 β∗x1 + 

τβ∗x2 − ω − µ − δ 

ω 

κ 

0 

0 

0 

−δ 

0 

−ξx1  

0  

ξx1 

. 

0  

−δc 

Now we shall find right eigen vector and left eigen vector corresponding to zero eigen value, 

The right eigen vector is 

 

and the left eigen vector is 

 

Hence we have 

 
whose sign determined the local stability criteria of the Endemic equilibrium point E∗. Substituting 

the values of all second order partial derivative measured at DFE is given by a = βw1w3v1 

−ξw1w5v1 −τβv2w2w3 <0 and b = −w3x1 −w3τx2 >0 provided κδ<ωδcand  

So a transcritical bifurcation occurs at R0 = 1. 

 Hence EEP is locally asymptotically stable if R0 >1.  

7 Persistence 

We proved that while basic reproductive number R0 <1, then the measles disease dies out 

irrespective of the initial size of the epidemic. If R0 >1, the disease-free equilibrium E0 become 
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unstable. Usually it is considered that the infected individuals I(t),C(t) will remain persistent for 

this event. Now, we prove the following theorem to verify the persistence of the measles disease. 

Theorem 6. For R0 >1, the infection will be uniformly persistence which means that there exist an 

ρ >0 in such away that for non-negative solutions of (1), satisfies the following liminfI(t) > ρ, 

liminfC(t) > ρ. Furthermore, there exist an interior steady state in this case. 

Proof. To prove the disease persistence we apply the theorem by H.R.Thieme. In order to prove 

this, we consider that 

G = (S,V,I,R,C),G¯ = (I,C), 

B = ,whereGiis the i-th component 

ofG} 

B0 = {G ∈B :Gi >0,i = 3,5} 

D = B/B0 = {G ∈B :Gi = 0fori = 3,5} 

Now we want to show that the system (1) is uniformly persistent with respect to (B0,D). Since 

D contain an unique equilibrium E0, it is sufficient to show that W
s
(E0)

T
B0 = ∅ where W

s
(E0) 

denotes the stable manifold of the disease free equilibrium E0. 

Suppose this is not true. Then there is a solution (S(t),V(t),I(t),R(t),C(t)) ∈B0 

the system (1), such that 

lim (S(t),V(t),I(t),R(t),C(t)) → (S0,V0,0,R0,0) 

t→∞ 

From the system (1) we have, 

 
So, 

. 

Note that JE0 is equal to F − V , has atleast one eigen value with positive real part when R0 >1. 

So there exist solutions for the linear system that can proliferate exponentially. Due to 

comparison argument solution of G never be bounded for t → ∞ which provides a contradiction to 

the reality that the solutions of (1) are uniformly bounded. Thus we have W
s
(E0)

T
B0 = ∅. Thus we 

can conclude that the model (1) is uniformly persistent.  

8 Sensitivity analysis 

Sensitivity analysis is a tool to determine how different values of an independent variable affect a 

particular dependent variable under a given set of assumptions. Sensitivity analysis is defined as 
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follows: Let U be a variable that depends on a parameter p, then the normalized sensitivity index 

of variable U with respect to the parameter p is given by the following equation: 

  (4) 

Now from our model the Basic reproductive number is as follows: 

  (5) 

and the local sensitivity analysis of R0 with respect to each parameter is 

calculated as follows: 

Sensitivity index of β is as follows: 

(6) 

(7) 

Similarly sensitivity index of δcis as follows: 

 

Similarly we can show that the sensitivity index of ξ,κ,τ>0 and sensitivity index of δ,µ,ω,δc<0. 

Also it is to be observed that R0 is independent of the system parameter η, that is sensitivity index 

of η = 0. 

So, we can conclude that β,ξ,τ,κhave a positive sensitivity indices. Thus they have a great effect 

on the transmission dynamics and prevalence of measles. Here increment of β,ξ,κ,τwill increase 

the value of the basic reproduction number R0. The increase of δ,µ,ω,δcwill cause the decrease of 

R0.Therefore they have a high influence on controlling and preventing transmission dynamics. 

9 Global stability analysis 

9.1 Global stability of DFE point 

To justify the DFE point is globally asymptotically stable, we apply the castillochavez criterion. 

Based on the theorem, to investigate the global stability of DFEP we rewrite the model in equation 

(1) as follows: 

, 

where X = (S, V, R) ∈R
3 

represent the number of uninfected population while Z = (I, C) ∈R
2 

represent the number of infected population. For the disease free equilibrium point to be globally 

stable it should meet the following two axiom: 

0) where X∗is globally asymptotically stable. 
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Theorem 7. The equilibrium point E1 = (S1,V1,0,R1,0) of the system in equation (1) is globally 

asymptotically stable if it satisfies the three conditions of Castillo-Chavez criterion. 

Proof. To prove the equilibrium point E1 = (S1,V1,0,R1,0) is globally asymptotically stable, first of 

all we should identify F(X, Z) and G(X, Z). From our model 

F(X, Z) = Λ + αV − (γ + δ)S − δR 

γS− (α + η + δ)VηV− δR 

G(X, Z) = βSI + ξCS+ τβIV − (ω + µ + δ)I 

κI− δcC 

The first condition is already proved. Now 

, 

is satisfying the second condition of Castillo-Chavez criterion for the reduced system 

0). From the first equation in system (1), we have the following equation: 

 
Integrating both sides 

 . (8) 

Since as t → ∞ 

 . (9) 

From the second equation in system (1), we have the following equation: 

  (10) 

Integrating both sides using the method of separable variable, 

  (11) 

Since t → ∞, 

. 

From the third equation, we have, 
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  (12) 

Integrating both sides using the method of separation of variables, 

 . (13) 

Since t → ∞, 

. 

Using the same fashion we can show that I → 0 = I1, ,C→ 0 = C1. 

Thus the second condition of Castillo-Chavez criterion holds true. Lastly we must show the 

third criterion as follows: i.e 

0) is an M-matrix and Gb(X,Z) ≥ 0 ∀ (X,Z) ∈ Ω. 

Now 

 . (14) 

So 

 . (15) 

Since the non-diagonal entries of 
∂G

∂Z (X∗,0) are non-negative. Thus 
∂G

∂Z (X∗,0) is an M-matrix. 

From 

. 

We have obtained the following equation: 

 . (16) 

Since, S1 ≥ S and V1 ≥ V it is clear that Gb(X, Z) ≥ 0 for all (X, Z) ∈ Ω. 

Therefore the DFEP is globally asymptotically stable.  

9.2 Global stability o Endemic Equilibrium point 

Theorem 8. The Endemic Equilibrium point is globally asymptotically stable. 

Proof. To prove global stability of EE point we use Lyapunov function as follows: 
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. 

After simplification and calculation we get 

 

where 

 

Hence if 

U − V ≤ 0, then . 

Whenever S = S∗, V = V ∗, I = I∗, R = R∗, C = C∗ 

. 

Thus by Lasalle invariant principle E∗is globally asymptotically stable if 

U − V ≤ 0  

10 Numerical simulation and Discussion 

 

Figure 2: Graphical representation of total population when R0 <1 
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In this section, numerical simulations are done by studying and interpreting the effects of some of 

the biological parameters by considering different values. In figure 2, we have plotted the graph of 

all sub-population when basic reproduction number R0 <1, where we observe that infected and 

recovered population increases but infected population become stable after a short period of time 

but recovered population increases. In fig 3, we have shown the graphical representation of all 

sub-population when basic reproduction number R0 >1. In this case infected population increases 

rapidly. Recovered and contaminated environment also increases but rate of increase is lower than 

infected population and after some time they become stable., but susceptible and vaccinated 

population goes to extinction. In figure 4 and figure 5 we have plotted graphically dynamics of 

susceptible and vaccinated population for different values of β. Here we observe that wheβ 

increases then susceptible and vaccinated population decreases. In figure 6, we have plotted a 

graph that is showing when β increases then infected population increases and after going to its 

peak, start decreasing and become stable. In figure 7, we observe that, rate of increase of infected 

population is higher with contaminated environment than without Table 1: The parameter values 

utilized in the numerical simulations for system 

(1) 

Parameters Biological definition value 

lion/year) 

(mil- Source 

Λ Rate of recruitment of the susceptible 

population 

20 Estimated 

β Disease transmission rate 0.004 Estimated 

ξ Interaction rate of Susceptible population 

with contaminated environment 

0.01 Estimated 

α Vaccine waning rate 0.16 Estimated 

δ Natural death rate 0.0875 Estimated 

γ Mortality rate of Susceptible population 

due to measles 

0.06 Estimated 

τ Rate at which vaccinated population 

becomes infected 

0.003 Estimated 

η Rate at which vaccinated population 

becomes recovered 

0.8 Estimated 

ω Rate at which infected population 

becomes recovered after getting vaccine 

0.14286 Estimated 

µ Mortality rate of infected population due 

to measles 

0.125 Estimated 

κ Rate at which infected population makes 

environment contaminated 

0.21 Estimated 

δc Rate at which contaminated environment 

becomes uninfected 

0.81 Estimated 
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Figure 3: Graphical representation of total population when R0 >1 

 

Figure 4: Effect of varying β on Susceptible population 

contaminated environment.. In figure 8 and figure 9, we have seen the effect of varying ξ on infected 

and susceptible population. when ξ decreases, the rate of infected population decreases and the 

rate of susceptible population increase. 

In this article, we present a mathematical model to study the transmission dynamics of 
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work analyzedmathematical model to study the transmission and recovery dynamics of measles 

infection using Figure 5: Effect of varying β on Vaccinated population 

 

Figure 6: Effect of varying β on Infected population 

ordinary differential equations(ODEs) to discuss its boundedness and stability. In this paper we 

have established the existence of non-negative solutions of the mathematical model. The basic 

reproduction number, R0 is calculated and used to determine the stability of the disease free 
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>1.We also have shown the local 

stability Figure 7: Infected population with and without contamination of environment 

 

Figure 8: Effect of varying ξ on infected population 

of DFEP and EEP by center manifold theory and global stability by castillochavezcriterion.In 

addition, numerical simulation of the model was presented and discussed. 

 

Figure 9: Effect of varying ξ on susceptible population 
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Figure 10: Contour plot of basic reproductive number R0 as a function of β and δ 
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