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ABSTRACT

Effective monitoring and precise forecasting of internal CO: corrosion are paramount for
safeguarding the structural integrity of oil pipelines. This research employs an array of advanced
machine learning and deep learning methodologies to predict corrosion progression, leveraging a
comprehensive dataset encapsulating critical environmental and operational factors. Various
regression techniques, including Support Vector Regression (SVR), Decision Trees, Random Forest,
K-Nearest Neighbours (KNN), and Polynomial Regression, were meticulously evaluated. Among
linear models, the Random Forest Regressor exhibited superior predictive accuracy with an R? of
0.9936 and an MSE of 0.0080. Notably, third-degree polynomial regression emerged as the most
effective nonlinear approach (R? = 0.9988). Regularized regression models underscored Ridge
Regression as the optimal choice, achieving an R? of 0.9989. Within deep learning paradigms, the
Feed-Forward Neural Network (FNN) and ResNet models demonstrated remarkable efficacy,
attaining a R? score of 0.9928. Furthermore, ensemble learning, particularly a hybridized CNN-CNN
Forecaster model, exhibited commendable predictive precision. The study emphasizes the necessity

of model selection for accurate corrosion forecasting and facilitating proactive maintenance.

Keywords: Al-driven corrosion prediction, Machine Learning, Deep Learning, CO: corrosion
forecasting, Ridge Regression, Feed-Forward Neural Network (FNN)
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1. INTRODUCTION

An inevitable process, corrosion happens when things,
notably metals, gradually erode as a result of electrochemical
or chemical interactions with their environment [1]. It is a
process that impacts a variety of materials and constructions;
additionally, corrosion may affect a material's solidity and
functionality in addition to changing its appearance [2].

According to [3], 37 manufacturers transported 216
million m? (1.4 billion barrels) of oil through 21,636 km of
pipelines. Meanwhile, 67 companies transported 152 billion
m? (5.4 trillion cubic feet) of natural gas via 55,982 km of
pipelines, with 11 companies handling both oil and gas. A
2016 NACE estimate pegged the cost of pipeline steel
corrosion in the oil and gas industry at USD 2.5 trillion, or
3.4% of global GDP, excluding safety and environmental
expenses, highlighting its critical impact. [4].

The lifespan of equipment is shortened by corrosion,
which results in prohibitive upkeep, unexpected shutdowns,
and financial losses. To guarantee productivity and cost-
effectiveness, preventive maintenance and continuous
evaluation are crucial [5]. Non-destructive testing (NDT) of
structures is increasingly utilizing imaging techniques,
which improve visual inspections and conserve money and
time. More efficient image-analysis techniques must be
created in order to modify image data into an arrangement
that can be used for damage assessment [6].

However, the failure impacts on the nearby pipeline were
not explained by the analysis for that specific pipeline failure
situation. Therefore, each pipeline must be analysed
independently [7]. Since practical manufacturing is rare
except in hazardous conditions, detecting corrosion before
leaks occur is essential [8]. Since pipelines are the primary
means of transferring crude and product oils, accurate
identification and prediction of pipeline leaks is crucial to the
pipeline's safe functioning.

1.1. Background

Internet of Things (IoT) and Machine Learning (ML)
based corrosion identification and prediction system which
makes use of sensors involving pH, thickness, and GPS. It
utilizes a classifier based on Q-learning and semi-supervised
learning for validation [9]. However, it needs Deep Learning
(DL) implementation for improved performance, and its
accuracy is dependent on the quality of the sensor
information.

Imran et al., examines Al applications in steel corrosion
prediction and detection, focusing developments in ML and
DL. Although Al enhances accuracy and effectiveness, it has
drawbacks, such as low-quality information and difficult-to-
understand models [10]. Future studies should improve
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collecting information, create interpretable models, and
verify Al in practical settings.

Data is transferred to the cloud for real-time analysis
utilizing loT-based sensor technologies to monitor
sustainability metrics and identify corrosion in reinforced
concrete structures [11]. The strategy depends on sensor
precision, reliability of data transfer, and integration
difficulties in extensive infrastructure.

A cathodic protection (CP) system helps minimize
corrosion in steel buildings that are surrounded by air. It
delivers constant protection by using a fiber sheet and
sacrificial anode [12]. However, environmental conditions
and the presence of residual corrosion affect how effective it
is.

2. METHODOLOGY

This section presents an extensive account of the research
methodology used, encompassing both sophisticated DL
frameworks for corrosion rate prediction and classic ML
regression techniques. There were two main stages to the
experimentation:

1. Machine Learning-Based Regression Analysis
2. Deep Learning-Based Corrosion Rate Prediction

The overall workflow of the methodology is depicted in
Fig.1. To identify the best predictive model, each strategy
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was executed into practice, refined, and contrasted using
legitimate evaluation metrics. To identify the best predictive
model, each strategy was executed into practice, refined, and
contrasted using legitimate evaluation metrics.

Fig.1. Topology of the proposed prediction methodology.
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2.1. Dataset Description

The dataset includes oil pipeline corrosion rates under
extreme conditions like high temperatures, acidic fluids, and
limited inhibitor efficiency. Generated using the NORSOK
M506 model with Monte Carlo simulation, it incorporates
factors such as temperature, flow velocity, CO2 pressure,
internal pressure, inhibitor efficiency, shear stress, pH, and
corrosion rate [13]. Due to limited experimental data, this
synthetic dataset aids in predictive modelling. Feature
relationships were analysed using a correlation heatmap
(Fig.2) to identify dependencies before model development.

Fig.2. Feature Correlation Heatmap.

2.2. Machine Learning-Based Regression Analysis
2.2.1. Linear Regression (1 Degree)

To assess the core linkages between corrosion rate and
pipeline characteristics (like material composition, exposure
factors, and environmental conditions), Linear Regression
has been utilized as a baseline model [10]. The model
conforms to the following formula:

y=Bot+Pix+te (D

where, y is the corrosion rate, x is the independent variable
(pipeline characteristic), and 0 and Bl are the regression
coefficients, ¢ is the residual error term. The Least Squares
Method has been used for training the model so as to reduce
residual errors, assure ideal parameter estimation.

2.2.2 Non-Linear Regression Models (2nd, 3rd, and 4th
Degree)

Nonlinear regression models of degree 2, 3, and 4 has been
established so as to incorporate any possible non-linear
correlations between the corrosion rate and impacting factors
[14]. The generic equation for polynomials is:

y=Bo+ Pix + Box?+ Bsx> + Pax*+ € 2)

where, intricate relationships between variables are
conveyed by higher-degree terms. To implement this, Scikit-
learn's Polynomial Features module has been applied for
feature engineering. Overfitting concerns were mitigated by
employing 5-Fold Cross-Validation (CV), particularly for
fourth-degree  polynomials. Model performance was
compared using Mean Squared Error (MSE) and Mean
Absolute Error (MAE).

2.2.3 Ridge and Lasso Regression

ISSN: 1355-5243

Regularized Regression Techniques has been applied to
prevent overfitting in polynomial regression of higher-
degree models [15]:

i. Ridge Regression: Prevents high coefficient values
via L2 penalty.

mingY’ (yi=§i)*+ A X B;° 3)

ii. Lasso Regression: By using an L1 penalty to reduce
unnecessary coefficients to zero, Lasso Regression
enables feature selection viable.

1.00

Temperature gl 0.00 -0.00 -0.00 -0.00 0.00 0.20 0.49 [

0.75
Flow velocity - 0.00 p¥[i3-0.00 -0.00 -0.00 p¥se} 0.00 0.11
- 0.50
CO2 pressure --0.00 -0.00 -0.00 -0.00 -0.00 guk:t:}]
- 0.25
Internal pressure --0.00 -0.00 -0.00 p¥sll -0.00 -0.00 0.07 -0.03

Corrosion Inhibitor efficiency --0.00 -0.00 -0.00 -0.00[B¥01] -0.00 0.00 - 0.00

shear stress - 0.00 [ER]-0.00 -0.00 -0.00 F¥OLY 0.00 0.11 025
pH - 0.20 0.00 OEEE] 0.07 0.00 0.00

0.11 -0.43 pHEeh]

i) -0.43 - —0.50

Corrosion rate - 0.49 0. -0.75

=}
=
=

Shear stress -

I}
z
c
=
2
i}
4
=
S
o

Temperature -

Flow velocity -

CO2 pressure -
Internal pressure - 2
o

Corrosion Inhibitor efficiency ﬂ

smingY., (yi—¥i)* + & ZIBj| )

Grid Search CV has been used to optimize the
regularization parameter (A), and model generalization
performance has been compared against conventional
polynomial regression.

2.3 Deep Learning-Based Corrosion Rate Prediction
2.3.1 Feedforward Neural Network (FNN)

A FNN has been implemented to model complex,
nonlinear interactions within the dataset [10]. The
architecture consists of an input layer incorporating relevant
pipeline characteristics, three fully connected hidden layers
with ReLU activation for non-linearity, and an output layer
with a linear activation function to predict corrosion rates.
Training has been conducted using the Adam optimizer
minimizing MSE loss function with a batch size of 16, 1000
epochs, and a 0.2 dropout rate to mitigate overfitting.

2.3.2 Residual Neural Network (ResNet) Model
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Given the advantages of deep residual learning, a ResNet-
based architecture has been adopted to address the vanishing
gradient problem. ResNet introduces skip connections,
allowing information to bypass certain layers and improve
learning efficiency [16]. The residual function is represented
as:

y=x+F((x, W) %)

where, W represents transformation's weights, x is the
input, and F (x, W) is the residual function. The architecture
incorporates multiple residual blocks with batch
normalization, ReLU activation, and has been trained using
the Adam optimizer.

2.3.3 CNN-CNN Forecaster Ensemble Model

To improve prediction accuracy, an ensemble approach is
proposed, combining several Convolutional Neural Network
(CNN) models [10].

i. CNN-Based Feature Extraction — Multiple CNN
architectures have been trained to capture
hierarchical corrosion-related features.

ii. Ensemble Learning — The outputs from different
CNN models has been aggregated using a weighted
averaging technique to produce the final prediction.

2.3.4 Generative Adversarial Networks (GAN)

For forecasting corrosion rates and creating synthetic data,
a GAN-based architecture has been used [17]. Two model
consists of:

e Generator (G): Produces artificial corrosion rate
information.

e Discriminator (D): Distinguishes between synthetic
and genuine data.

During training, the generator attempts to fool the
discriminator, while the discriminator learns to distinguish
between genuine and synthetic data. The model has been
optimized using Binary Cross-Entropy loss and Adam
optimizer, with 1000 training epochs ensuring realistic data
generation.

3. RESULTS AND ANALYSIS

The analysis of the model’s efficiency is a crucial aspect
of this research, with an emphasis on important regression
metrics like MAE, MSE, Root Mean Squared Error (RMSE),
R-Squared (R2). The objective is to ascertain the model that
is more effective in providing precise predictions. The
research compares sophisticated DL models, such as

ISSN: 1355-5243

ensemble techniques and Generative Adversarial Networks
(GANSs), with conventional ML regression models.

It's crucial to comprehend the target variable's distribution
prior to analysing model-specific outcomes. The distribution
of corrosion rates throughout the dataset is shown in Fig. 3,
which sets the tone for the subsequent model analysis.

Model MAE MSE RMSE | R2Score
SVR 0.1212 | 0.0275 | 0.1658 0.9776
Decision Tree 0.0755 0.0120 0.1097 0.9902
RandomForest | 0.0737 0.0078 0.0885 0.9936
KNN 0.2955 | 0.1388 | 0.3725 0.8869

Fig. 3. Distribution of Corrosion Rates.

3.1 Machine Learning Regression Models (Linear &
Non-Linear)

3.1.1 Linear Regression Models

SVR, Decision Tree, Random Forest, and K-Nearest
Neighbours (KNN) has been used to evaluate the
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performance of conventional regression models. Table 1
provides a summary of the findings.

Table 1: Performance Comparison of Conventional Regression Models

with the lowest RMSE of 0.0885 and the highest R2 score
0f 0.9936, the Random Forest model surpassed others,
indicating that it can effectively manage non-linearity.
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3.1.2 Non-Linear Regression Models
As shown in Table 2, polynomial regression models with

degrees 1 to 4 were evaluated. Degree 3 offered the best
match.

Table 2. Evaluation of Polynomial Regression Models Across Different

Degrees
Polynomial Train Test Train Test CrossValidation
Degree R2 R2 MSE MSE R?
1 0.9621 | 0.9323 | 0.0633 | 0.0830 | 0.9571 +0.0099
2 0.9988 | 0.9975 | 0.0020 | 0.0031 | 0.9982 +0.0004
3 0.9996 | 0.9988 | 0.0007 | 0.0014 | 0.9990 =+ 0.0004
4 0.9998 | 0.9977 | 0.0004 | 0.0028 | 0.9954+0.0012

With the lowest test MSE 0f 0.0014 and a test R2 0f 0.9988,
polynomial degree 3 performed best. The Lasso and Ridge
regression models were also used; Ridge regression had the
best R2 score, at 0.9989.

3.2 Deep Learning Model Performance

DL models, such as a CNN ensemble, FNN, ResNet, and
GAN has been evaluated, in terms of predicted accuracy. The
ResNet model fared noticeably better than the other models.
A thorough summary of each model's obtained performance
measures is given in Table 3.

Table 3. Performance Metrics of DL Models for Corrosion Rate Prediction

Model Metric Value
R? 0.9928
Feed Forward Neural MSE 0.0088
Network (FNN)
RMSE 0.0940
ResNet Test MAE 0.0461
CNN Ensemble Ensemble MAE 10.9580
Test MAPE 89.37%
GAN
Test MAE 0.4820

ISSN: 1355-5243

4. CONCLUSIONS

This study analysed a variety of modelling techniques for
predictive analysis, such as DL models, regularized
regression, non-linear regression, and linear regression. With
an R2 of 0.9936, the Random Forest Regressor was
determined to be the top-performing linear regression model
after extensive testing. A third-degree model in polynomial
regression exhibited exceptional accuracy, with R2 values
above 0.998 in every assessment. With an R2 of 0.9989,
Ridge Regression showed the best generalization among
regularized models. In DL, the FNN demonstrated great
predictive performance (R2 = 0.9928).

The results show that DL architectures like ResNet perform
better in difficult circumstances, achieving a Test MAE of
0.0461. while classic ML models still produce reliable
answers. This study emphasizes how crucial it is to
determine models according to the traits of the data and the
specifications of the application. Future research can focus
on testing different degrees and types of corrosion on well-

performing models to assess their robustness and
generalizability across diverse real-world corrosion
scenarios.
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