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ABSTRACT 
 

Effective monitoring and precise forecasting of internal CO₂ corrosion are paramount for 

safeguarding the structural integrity of oil pipelines. This research employs an array of advanced 

machine learning and deep learning methodologies to predict corrosion progression, leveraging a 

comprehensive dataset encapsulating critical environmental and operational factors. Various 

regression techniques, including Support Vector Regression (SVR), Decision Trees, Random Forest, 

K-Nearest Neighbours (KNN), and Polynomial Regression, were meticulously evaluated. Among 

linear models, the Random Forest Regressor exhibited superior predictive accuracy with an R² of 

0.9936 and an MSE of 0.0080. Notably, third-degree polynomial regression emerged as the most 

effective nonlinear approach (R² = 0.9988). Regularized regression models underscored Ridge 

Regression as the optimal choice, achieving an R² of 0.9989. Within deep learning paradigms, the 

Feed-Forward Neural Network (FNN) and ResNet models demonstrated remarkable efficacy, 

attaining a R² score of 0.9928. Furthermore, ensemble learning, particularly a hybridized CNN-CNN 

Forecaster model, exhibited commendable predictive precision. The study emphasizes the necessity 

of model selection for accurate corrosion forecasting and facilitating proactive maintenance. 

 

Keywords: AI-driven corrosion prediction, Machine Learning, Deep Learning, CO₂ corrosion 

forecasting, Ridge Regression, Feed-Forward Neural Network (FNN) 
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1. INTRODUCTION* 

 

An inevitable process, corrosion happens when things, 

notably metals, gradually erode as a result of electrochemical 

or chemical interactions with their environment [1]. It is a 

process that impacts a variety of materials and constructions; 

additionally, corrosion may affect a material's solidity and 

functionality in addition to changing its appearance [2]. 

According to [3], 37 manufacturers transported 216 

million m³ (1.4 billion barrels) of oil through 21,636 km of 

pipelines. Meanwhile, 67 companies transported 152 billion 

m³ (5.4 trillion cubic feet) of natural gas via 55,982 km of 

pipelines, with 11 companies handling both oil and gas. A 

2016 NACE estimate pegged the cost of pipeline steel 

corrosion in the oil and gas industry at USD 2.5 trillion, or 

3.4% of global GDP, excluding safety and environmental 

expenses, highlighting its critical impact. [4]. 

The lifespan of equipment is shortened by corrosion, 

which results in prohibitive upkeep, unexpected shutdowns, 

and financial losses. To guarantee productivity and cost-

effectiveness, preventive maintenance and continuous 

evaluation are crucial [5]. Non-destructive testing (NDT) of 

structures is increasingly utilizing imaging techniques, 

which improve visual inspections and conserve money and 

time. More efficient image-analysis techniques must be 

created in order to modify image data into an arrangement 

that can be used for damage assessment [6]. 

However, the failure impacts on the nearby pipeline were 

not explained by the analysis for that specific pipeline failure 

situation. Therefore, each pipeline must be analysed 

independently [7]. Since practical manufacturing is rare 

except in hazardous conditions, detecting corrosion before 

leaks occur is essential [8]. Since pipelines are the primary 

means of transferring crude and product oils, accurate 

identification and prediction of pipeline leaks is crucial to the 

pipeline's safe functioning. 

 

1.1. Background 

 

Internet of Things (IoT) and Machine Learning (ML) 

based corrosion identification and prediction system which 

makes use of sensors involving pH, thickness, and GPS. It 

utilizes a classifier based on Q-learning and semi-supervised 

learning for validation [9]. However, it needs Deep Learning 

(DL) implementation for improved performance, and its 

accuracy is dependent on the quality of the sensor 

information. 

Imran et al., examines AI applications in steel corrosion 

prediction and detection, focusing developments in ML and 

DL. Although AI enhances accuracy and effectiveness, it has 

drawbacks, such as low-quality information and difficult-to-

understand models [10]. Future studies should improve 
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collecting information, create interpretable models, and 

verify AI in practical settings. 

Data is transferred to the cloud for real-time analysis 

utilizing IoT-based sensor technologies to monitor 

sustainability metrics and identify corrosion in reinforced 

concrete structures [11]. The strategy depends on sensor 

precision, reliability of data transfer, and integration 

difficulties in extensive infrastructure. 

A cathodic protection (CP) system helps minimize 

corrosion in steel buildings that are surrounded by air. It 

delivers constant protection by using a fiber sheet and 

sacrificial anode [12]. However, environmental conditions 

and the presence of residual corrosion affect how effective it 

is. 

 

2. METHODOLOGY 

 

This section presents an extensive account of the research 

methodology used, encompassing both sophisticated DL 

frameworks for corrosion rate prediction and classic ML 

regression techniques. There were two main stages to the 

experimentation:  

1. Machine Learning-Based Regression Analysis 

2. Deep Learning-Based Corrosion Rate Prediction  

The overall workflow of the methodology is depicted in 

Fig.1. To identify the best predictive model, each strategy 

was executed into practice, refined, and contrasted using 

legitimate evaluation metrics. To identify the best predictive 

model, each strategy was executed into practice, refined, and 

contrasted using legitimate evaluation metrics. 

 

Fig.1. Topology of the proposed prediction methodology. 
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2.1. Dataset Description 

 

The dataset includes oil pipeline corrosion rates under 

extreme conditions like high temperatures, acidic fluids, and 

limited inhibitor efficiency. Generated using the NORSOK 

M506 model with Monte Carlo simulation, it incorporates 

factors such as temperature, flow velocity, CO2 pressure, 

internal pressure, inhibitor efficiency, shear stress, pH, and 

corrosion rate [13]. Due to limited experimental data, this 

synthetic dataset aids in predictive modelling. Feature 

relationships were analysed using a correlation heatmap 

(Fig.2) to identify dependencies before model development. 

 

 

Fig.2. Feature Correlation Heatmap. 

 

2.2. Machine Learning-Based Regression Analysis 

 

2.2.1. Linear Regression (1st Degree) 

 

To assess the core linkages between corrosion rate and 

pipeline characteristics (like material composition, exposure 

factors, and environmental conditions), Linear Regression 

has been utilized as a baseline model [10]. The model 

conforms to the following formula:  

 

              y = β0 + β1x + ϵ                  (1) 

 

where, y is the corrosion rate, x is the independent variable 

(pipeline characteristic), and 𝛽0 and β1 are the regression 

coefficients, ε is the residual error term. The Least Squares 

Method has been used for training the model so as to reduce 

residual errors, assure ideal parameter estimation. 

 

2.2.2 Non-Linear Regression Models (2nd, 3rd, and 4th 

Degree) 

 

Nonlinear regression models of degree 2, 3, and 4 has been 

established so as to incorporate any possible non-linear 

correlations between the corrosion rate and impacting factors 

[14]. The generic equation for polynomials is: 

 

        y = β0 + β1x + β2x2 + β3x3 + β4x4 + ϵ       (2) 

 

where, intricate relationships between variables are 

conveyed by higher-degree terms. To implement this, Scikit-

learn's Polynomial Features module has been applied for 

feature engineering. Overfitting concerns were mitigated by 

employing 5-Fold Cross-Validation (CV), particularly for 

fourth-degree polynomials. Model performance was 

compared using Mean Squared Error (MSE) and Mean 

Absolute Error (MAE). 

 

2.2.3 Ridge and Lasso Regression 

 

Regularized Regression Techniques has been applied to 

prevent overfitting in polynomial regression of higher-

degree models [15]:  

 

i. Ridge Regression: Prevents high coefficient values 

via L2 penalty.  

 

            minβ∑ (yi−ŷi)2 + λ ∑βj
2           (3) 

 

ii. Lasso Regression: By using an L1 penalty to reduce 

unnecessary coefficients to zero, Lasso Regression 

enables feature selection viable.  

 

            sminβ∑ (yi−ŷi)2 + λ ∑∣βj|       (4) 

 

Grid Search CV has been used to optimize the 

regularization parameter (λ), and model generalization 

performance has been compared against conventional 

polynomial regression. 

 

2.3 Deep Learning-Based Corrosion Rate Prediction 

 

2.3.1 Feedforward Neural Network (FNN) 

 

A FNN has been implemented to model complex, 

nonlinear interactions within the dataset [10]. The 

architecture consists of an input layer incorporating relevant 

pipeline characteristics, three fully connected hidden layers 

with ReLU activation for non-linearity, and an output layer 

with a linear activation function to predict corrosion rates. 

Training has been conducted using the Adam optimizer 

minimizing MSE loss function with a batch size of 16, 1000 

epochs, and a 0.2 dropout rate to mitigate overfitting. 

 

2.3.2 Residual Neural Network (ResNet) Model 
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Given the advantages of deep residual learning, a ResNet-

based architecture has been adopted to address the vanishing  

gradient problem. ResNet introduces skip connections, 

allowing information to bypass certain layers and improve 

learning efficiency [16]. The residual function is represented 

as:  

 

               y = x + F (x, W)             (5) 

 

where, W represents transformation's weights, x is the 

input, and F (x, W) is the residual function. The architecture 

incorporates multiple residual blocks with batch 

normalization, ReLU activation, and has been trained using 

the Adam optimizer. 

 

2.3.3 CNN-CNN Forecaster Ensemble Model 

 

 To improve prediction accuracy, an ensemble approach is 

proposed, combining several Convolutional Neural Network 

(CNN) models [10]. 

 

i. CNN-Based Feature Extraction – Multiple CNN 

architectures have been trained to capture 

hierarchical corrosion-related features.  

  

ii. Ensemble Learning – The outputs from different 

CNN models has been aggregated using a weighted 

averaging technique to produce the final prediction. 

 

2.3.4 Generative Adversarial Networks (GAN) 

 

For forecasting corrosion rates and creating synthetic data, 

a GAN-based architecture has been used [17]. Two model 

consists of:  

 

 Generator (G): Produces artificial corrosion rate 

information.  

 Discriminator (D): Distinguishes between synthetic 

and genuine data.  

 

During training, the generator attempts to fool the 

discriminator, while the discriminator learns to distinguish 

between genuine and synthetic data. The model has been 

optimized using Binary Cross-Entropy loss and Adam 

optimizer, with 1000 training epochs ensuring realistic data 

generation. 

 

3. RESULTS AND ANALYSIS 

 

The analysis of the model’s efficiency is a crucial aspect 

of this research, with an emphasis on important regression 

metrics like MAE, MSE, Root Mean Squared Error (RMSE), 

R-Squared (R2). The objective is to ascertain the model that 

is more effective in providing precise predictions. The 

research compares sophisticated DL models, such as 

ensemble techniques and Generative Adversarial Networks 

(GANs), with conventional ML regression models.    

It's crucial to comprehend the target variable's distribution 

prior to analysing model-specific outcomes. The distribution 

of corrosion rates throughout the dataset is shown in Fig. 3, 

which sets the tone for the subsequent model analysis. 

 

 

 

Fig. 3. Distribution of Corrosion Rates. 

 

3.1 Machine Learning Regression Models (Linear & 

Non-Linear) 

 

3.1.1 Linear Regression Models 

 

SVR, Decision Tree, Random Forest, and K-Nearest 

Neighbours (KNN) has been used to evaluate the 

performance of conventional regression models. Table 1 

provides a summary of the findings. 

 

 

Table 1: Performance Comparison of Conventional Regression Models 

 

 

with the lowest RMSE of 0.0885 and the highest R2 score 

of 0.9936, the Random Forest model surpassed others, 

indicating that it can effectively manage non-linearity. 

Model MAE MSE RMSE R² Score 

SVR 0.1212 0.0275 0.1658 0.9776 

Decision Tree 0.0755 0.0120 0.1097 0.9902 

RandomForest 0.0737 0.0078 0.0885 0.9936 

KNN 0.2955 0.1388 0.3725 0.8869 
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3.1.2 Non-Linear Regression Models 

 

As shown in Table 2, polynomial regression models with 

degrees 1 to 4 were evaluated. Degree 3 offered the best 

match.  

 

 

Table 2. Evaluation of Polynomial Regression Models Across Different 

Degrees 

 

Polynomial 

Degree 

Train 

R² 

Test 

R² 

Train 

MSE 

Test 

MSE 

CrossValidation 

R² 

1 0.9621 0.9323 0.0633 0.0830 0.9571 ± 0.0099 

2 0.9988 0.9975 0.0020 0.0031 0.9982 ± 0.0004 

3 0.9996 0.9988 0.0007 0.0014 0.9990 ± 0.0004 

4 0.9998 0.9977 0.0004 0.0028 0.9954 ± 0.0012 

 

     With the lowest test MSE of 0.0014 and a test R2 of 0.9988, 

polynomial degree 3 performed best. The Lasso and Ridge 

regression models were also used; Ridge regression had the 

best R2 score, at 0.9989. 

    

3.2 Deep Learning Model Performance 

 

      DL models, such as a CNN ensemble, FNN, ResNet, and 

GAN has been evaluated, in terms of predicted accuracy. The 

ResNet model fared noticeably better than the other models. 

A thorough summary of each model's obtained performance 

measures is given in Table 3. 

 

 

Table 3. Performance Metrics of DL Models for Corrosion Rate Prediction 

 

Model Metric     Value 

 

    Feed Forward Neural 

Network (FNN) 

   R² 0.9928 

   MSE 0.0088 

   RMSE 0.0940 

   ResNet     Test MAE 0.0461 

CNN Ensemble Ensemble MAE 10.9580 

   GAN 
    Test MAPE 89.37% 

    Test MAE 0.4820 

 

 

 

 

4. CONCLUSIONS 

 

This study analysed a variety of modelling techniques for 

predictive analysis, such as DL models, regularized 

regression, non-linear regression, and linear regression. With 

an R2 of 0.9936, the Random Forest Regressor was 

determined to be the top-performing linear regression model 

after extensive testing. A third-degree model in polynomial 

regression exhibited exceptional accuracy, with R2 values 

above 0.998 in every assessment. With an R2 of 0.9989, 

Ridge Regression showed the best generalization among 

regularized models. In DL, the FNN demonstrated great 

predictive performance (R2 = 0.9928). 

The results show that DL architectures like ResNet perform 

better in difficult circumstances, achieving a Test MAE of 

0.0461. while classic ML models still produce reliable 

answers. This study emphasizes how crucial it is to 

determine models according to the traits of the data and the 

specifications of the application. Future research can focus 

on testing different degrees and types of corrosion on well-

performing models to assess their robustness and 

generalizability across diverse real-world corrosion 

scenarios. 
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