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Abstract 

Robustness assessment of engineering systems under uncertainty is a critical factor for ensuring 

operational reliability and minimizing costly downtime. Traditional probabilistic methods 

often fall short in addressing the vagueness and ambiguity inherent in real-world data and 

expert judgments. This study presents an in-depth application of fuzzy logic approaches—

including Fuzzy Fault Tree Analysis (FFTA), Fuzzy Reliability Block Diagrams (FRBD), and 

Fuzzy Bayesian Networks (FBN)—to model and evaluate the robustness of complex 

engineering systems. Detailed case studies on an automated manufacturing plant and a power 

distribution system demonstrate how fuzzy models effectively capture uncertainty through 

membership functions and fuzzy arithmetic, providing a richer reliability assessment than 

classical methods. Sensitivity analyses identify the most influential parameters affecting 

system robustness, guiding targeted maintenance and risk mitigation. A comparative evaluation 

of the fuzzy methods highlights their respective strengths and limitations, informing model 

selection based on application requirements. The results underscore fuzzy logic’s potential to 

enhance fault diagnosis, maintenance prioritization, and decision-making under uncertainty. 

Finally, future research directions emphasize real-time fuzzy monitoring and hybrid AI 

integration to meet the demands of increasingly complex and interconnected systems. 

Keywords: Fuzzy Logic, Robustness Assessment, Fault Tree Analysis, Reliability Block 
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1. Introduction 

In today’s increasingly complex engineering landscape, ensuring the robustness of systems is 

paramount. Robustness, defined as the ability of a system to maintain desired performance 

despite internal faults and external disturbances, directly influences operational continuity, 

safety, and cost-effectiveness [1]. However, achieving accurate robustness assessment is 

complicated by inherent uncertainties arising from fluctuating operational conditions, variable 

environmental factors, aging infrastructure, incomplete failure data, and subjective expert 

opinions. 
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Traditional reliability analysis techniques, such as Fault Tree Analysis (FTA) and Reliability 

Block Diagrams (RBD), typically utilize crisp, fixed failure probabilities. These approaches 

often prove insufficient when data are imprecise or expert judgments are qualitative rather than 

quantitative. To overcome these limitations, fuzzy logic provides a powerful alternative 

framework. Introduced by Zadeh in 1965 [2], fuzzy logic allows the representation of 

uncertainty and ambiguity via degrees of membership to fuzzy sets rather than binary true/false 

classifications. This capability enables engineers to capture and process imprecise failure 

probabilities and linguistic expert assessments more naturally and effectively. 

Ross emphasized the advantages of fuzzy logic in engineering applications, particularly for 

handling uncertainty and partial truth values. Since then, fuzzy logic has been successfully 

applied in reliability engineering to develop models that better reflect the uncertain nature of 

real-world systems [3]. This paper focuses on three key fuzzy methodologies: Fuzzy Fault Tree 

Analysis (FFTA), Fuzzy Reliability Block Diagrams (FRBD), and Fuzzy Bayesian Networks 

(FBN). Each offers distinct approaches to modeling and analyzing robustness, accommodating 

various degrees of uncertainty and system complexities. 

To demonstrate practical applicability, this research applies these fuzzy models to two complex 

systems: a medium-scale automated manufacturing plant and an electrical power distribution 

system. Both systems face variable operational environments and uncertain failure data, 

making them ideal candidates for fuzzy robustness assessment. The study integrates diverse 

data sources—historical failure logs, expert evaluations, and sensor measurements—into fuzzy 

membership functions and applies fuzzy arithmetic and inference techniques to quantify system 

reliability [4]. 

Through detailed modeling, simulation, sensitivity analysis, and comparative evaluation, the 

paper aims to provide engineers and decision-makers with actionable insights into the 

robustness of critical systems. The outcomes highlight the enhanced interpretability, flexibility, 

and accuracy of fuzzy methods over traditional crisp approaches. Finally, the paper discusses 

emerging trends and future research avenues, including real-time fuzzy robustness monitoring 

and hybrid intelligent systems. 

2. Background and Related Work 

Reliability assessment has traditionally been based on probabilistic models assuming precise 

failure rates and independent component failures. Fault Tree Analysis (FTA) decomposes 

system failures into logical combinations of basic events but requires crisp probabilities, 

limiting its handling of ambiguous data. Reliability Block Diagrams (RBD) represent system 
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configurations via blocks denoting components but similarly assume precise reliability values. 

Such methods struggle with expert knowledge expressed in vague terms like "highly likely" or 

"low probability" and incomplete or inconsistent data. 

Fuzzy set theory extends classical reliability approaches by introducing membership functions 

that quantify the degree of belonging of uncertain quantities to fuzzy sets. This enables 

capturing expert knowledge in linguistic variables and accommodating data imprecision. Fuzzy 

Fault Tree Analysis (FFTA) incorporates fuzzy probabilities into fault trees, propagating 

uncertainties through fuzzy logical operators. Studies by Venkatesh and Ramachandran 

demonstrated FFTA’s capability to model ambiguous failure data effectively. 

Fuzzy Reliability Block Diagrams (FRBD) apply fuzzy arithmetic to aggregate component 

fuzzy reliabilities based on system configurations. Chen and Tanaka et al. illustrated the 

advantages of FRBD in handling environmental and operational variability in power systems 

[5]. 

Fuzzy Bayesian Networks (FBN) integrate fuzzy sets with probabilistic graphical models to 

represent causal dependencies and uncertain conditional probabilities. Kandasamy et al. and 

Sharma and Kumar applied FBNs for dynamic fault diagnosis, showing improved accuracy 

with imprecise data. 

Despite extensive individual applications, integrated comparative analyses across fuzzy 

methodologies remain sparse. This study fills this gap by applying FFTA, FRBD, and FBN to 

the same case systems and comparing their results, interpretability, and computational aspects 

[6]. 

3. Methodology 

3.1 System Descriptions and Data Sources 

The first case study focuses on an automated manufacturing plant specialized in precision 

assembly. The system comprises conveyor belts, robotic arms, programmable logic controllers 

(PLCs), and various sensors monitoring temperature, vibration, and load. Operating in a 

fluctuating industrial environment, the plant experiences failure modes such as motor 

malfunctions, sensor inaccuracies, and mechanical wear [7]. 

The second case study involves a power distribution system encompassing generation units, 

transformers, circuit breakers, relays, transmission lines, and control systems. The power 

system encounters faults including short circuits, overloads, aging equipment failures, and 

environmental disruptions like lightning strikes [8]. 

Data for both systems were collected from three primary sources: maintenance logs 
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(incomplete and noisy), expert assessments providing linguistic failure likelihoods, and sensor 

measurements reflecting real-time operational conditions. These heterogeneous and imprecise 

data justified fuzzy modeling. 

3.2 Fuzzy Fault Tree Analysis (FFTA) 

A fault tree was constructed for the manufacturing system’s top failure event, decomposing it 

into basic events connected via logical AND and OR gates. Each basic event’s failure 

probability was represented as a fuzzy membership function—triangular or trapezoidal—

reflecting expert confidence intervals and historical data ranges. Fuzzy AND and OR 

operations replaced classical Boolean logic to propagate uncertainty upward. Defuzzification 

via the centroid method yielded crisp estimates for decision-making. Simulations were 

performed using MATLAB’s Fuzzy Logic Toolbox [9]. 

3.3 Fuzzy Reliability Block Diagrams (FRBD) 

The power system’s components were arranged into a reliability block diagram reflecting series 

and parallel connections. Each component’s reliability was characterized by fuzzy membership 

functions obtained from data and expert inputs. System reliability was computed by applying 

fuzzy arithmetic: fuzzy product operations for series arrangements and fuzzy complement-

based calculations for parallel configurations. This resulted in an overall fuzzy system 

reliability metric reflecting uncertainty and variability [9]. 

3.4 Fuzzy Bayesian Networks (FBN) 

An FBN model was developed representing component states and fault dependencies as nodes 

and directed edges. Conditional Probability Tables (CPTs) were defined using fuzzy 

membership functions, capturing uncertainty in conditional failure probabilities. Fuzzy 

probabilistic inference algorithms propagated observed evidence—such as sensor readings and 

fault alarms—through the network, computing posterior fuzzy fault probabilities. This dynamic 

inference supported real-time fault diagnosis [10]. 

3.5 Sensitivity Analysis 

To identify critical parameters affecting robustness, sensitivity analyses were conducted. One-

at-a-Time (OAT) fuzzy sensitivity varied individual input membership functions while holding 

others constant, observing impacts on system robustness. Fuzzy Monte Carlo simulations 

sampled parameters jointly to capture interaction effects. Tornado diagrams visualized ranked 

parameter sensitivities. 
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4. Results and Discussion 

4.1 Fuzzy Fault Tree Analysis Results 

Table 1 summarizes membership function parameters for key basic fault events in the 

manufacturing system. 

Basic Event Membership 

Function 

Parameters 

(a,b,c) 

Description 

Motor Failure Triangular (0.05, 0.10, 0.15) Estimated failure 

probability range 

Sensor Malfunction Triangular (0.02, 0.05, 0.08) Sensor failure likelihood 

PLC Controller 

Fault 

Trapezoidal (0.03, 0.06, 0.08, 

0.10) 

Uncertainty in control 

errors 

Conveyor Belt 

Breakdown 

Triangular (0.04, 0.07, 0.11) Mechanical wear 

variability 

Robotic Arm Joint 

Wear 

Triangular (0.06, 0.09, 0.12) Wear-induced failures 

Power Supply 

Interruption 

Trapezoidal (0.01, 0.03, 0.04, 

0.06) 

Power instability 

Table 1 

 

Figure 1 

Figure 1 depicts the fault tree with fuzzy failure probabilities annotated, showing how 

individual events contribute to the top-level failure [11]. 

The fuzzy fault tree analysis revealed a top event fuzzy failure probability membership function 

with a modal value around 0.10 and bounds reflecting uncertainty from 0.07 to 0.14. This range 
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enables risk managers to assess not only the likelihood of failure but also the confidence 

intervals, improving maintenance prioritization. 

4.2 Fuzzy Reliability Block Diagram Results 

Table 2 lists fuzzy reliability membership parameters for key power system components. 

Component Membership 

Function 

Parameters 

(a,b,c) 

Description 

Transformer Triangular (0.85, 0.90, 0.95) Reliability with uncertainty 

due to aging 

Circuit Breaker Triangular (0.80, 0.85, 0.90) Operational variability 

Relay Trapezoidal (0.75, 0.80, 0.90, 

0.95) 

Failure rate uncertainty 

Transmission 

Line 

Triangular (0.70, 0.80, 0.90) Impact of environmental 

factors 

Generator Triangular (0.88, 0.92, 0.97) Maintenance-dependent 

reliability 

Control System Trapezoidal (0.78, 0.85, 0.88, 

0.93) 

Software fault variability 

Table 2 

 

Figure 2 

Figure 2 illustrates the system’s reliability block diagram annotated with these fuzzy 

reliabilities [12]. 

Graph 2 shows the fuzzy system reliability trend over operational time, demonstrating gradual 
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reliability degradation with uncertainty bands reflecting varying maintenance and 

environmental conditions. 

This visualization aids operators in predicting maintenance windows and managing risk. 

4.3 Fuzzy Bayesian Network Results 

Table 3 presents example fuzzy Conditional Probability Tables (CPTs) for sensor fault given 

component health states. 

Parent 

Node 

State 

Sensor 

Fault 

Probability 

(a,b,c) 

Interpretation 

Healthy (0.0, 0.1, 

0.2) 

Low likelihood 

Degraded (0.3, 0.5, 

0.7) 

Moderate 

likelihood 

Faulty (0.8, 0.9, 

1.0) 

High 

likelihood 

 

Figure3 

Graph 3 displays posterior fuzzy fault probabilities computed after integrating observed sensor 

evidence [13]. 

The fuzzy Bayesian inference allowed ranking of likely faults with associated uncertainty 

margins, improving fault diagnosis precision. 
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4.4 Sensitivity Analysis 

The tornado diagram (Figure 3) ranks input parameters by their impact on the system 

robustness index. 

Results indicated motor failure probability and power supply interruption as the most 

influential parameters, guiding focused data collection and monitoring efforts [14]. 

4.5 Comparative Analysis of Fuzzy Models 

Table 4 compares reliability indices and defuzzified robustness from FFTA, FRBD, and FBN 

applied to the case systems[15]. 

Model Reliability Index 

(a,b,c) 

Defuzzified 

Robustness 

Comments 

Fuzzy Fault Tree 

Analysis 

(0.62, 0.72, 0.82) 0.72 Detailed hierarchical 

failure modeling 

Fuzzy Reliability 

Block Diagram 

(0.60, 0.70, 0.80) 0.70 Efficient system-level 

approximation 

Fuzzy Bayesian 

Network 

(0.64, 0.75, 0.85) 0.75 Captures dependencies 

and dynamics 

 

Figure 4 

Figure 4 overlays the fuzzy membership functions of the system reliability indices from all 

three methods. 

FBN generally produced higher robustness values due to its ability to model complex 

dependencies and update beliefs dynamically. FFTA provided transparent fault propagation 

paths, useful for root cause analysis, while FRBD was computationally less demanding and 

easier to implement for system-level reliability approximations [16]. 
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5. Future Trends and Applications 

The integration of fuzzy logic with emerging artificial intelligence [17] techniques represents 

a promising direction for robustness assessment. Neuro-fuzzy systems enable adaptive tuning 

of membership functions based on data, reducing reliance on subjective expert elicitation [18]. 

Evolutionary algorithms optimize fuzzy system parameters to enhance accuracy [19]. 

Real-time fuzzy robustness monitoring is gaining importance, particularly with the advent of 

Internet of Things (IoT) devices generating continuous streams of operational data [20]. 

Embedded fuzzy inference engines can process noisy sensor inputs to detect early degradation 

and support predictive maintenance. 

Applications in smart grids benefit from fuzzy modeling of renewable energy variability and 

load uncertainties, improving fault diagnosis and system control [21]. Autonomous vehicles 

and robotic platforms use fuzzy decision-making to manage uncertain sensory inputs and 

environmental complexities [22]. 

Cloud and edge computing architectures enable scalable distributed fuzzy robustness 

assessment for large-scale cyber-physical systems [23]. The fusion of fuzzy logic with machine 

learning and deep learning holds potential for intelligent, explainable, and adaptive robustness 

evaluation in the future [24]. 

6. Conclusion 

This research demonstrates the power of fuzzy logic methods—FFTA, FRBD, and FBN—in 

robustly assessing the reliability of complex engineering systems under uncertainty. By 

modeling failure probabilities as fuzzy membership functions, the study captures the vagueness 

inherent in real-world data and expert knowledge. The manufacturing and power system case 

studies illustrate how fuzzy models provide richer reliability measures, including uncertainty 

bounds, improving fault diagnosis, maintenance scheduling, and risk management. 

Sensitivity analyses identified key parameters influencing system robustness, enabling targeted 

uncertainty reduction efforts. Comparative evaluation revealed trade-offs among fuzzy 

methods in terms of modeling detail, computational demand, and interpretability. These 

insights support practitioners in selecting appropriate fuzzy techniques aligned with system 

complexity and data availability. 

The findings advocate for wider adoption of fuzzy logic in reliability engineering to enhance 

decision-making under ambiguous conditions. Future work should focus on implementing real-

time fuzzy robustness monitoring and integrating fuzzy approaches with hybrid AI models to 

address growing system complexities. 



Corrosion Management      ISSN: 1355-5243 
(https://corrosion-management.com/) 
Volume 35, Issue 02 – 2025 
 

 

168 
1355-5243/© The Authors. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). 

SCOPUS 

References 

1. Mendenhall W, Beaver RJ, Beaver BM. Introduction to Probability and Statistics. 14th 

ed. Cengage Learning; 2013. 

2. Vesely WE, Goldberg FF, Roberts NE, Haasl DF. Fault Tree Handbook. NUREG-

0492. US Nuclear Regulatory Commission; 1981. 

3. Modarres M. Reliability Engineering and Risk Analysis: A Practical Guide. 2nd ed. 

CRC Press; 2016. 

4. Zadeh LA. Fuzzy sets. Information and Control. 1965;8(3):338–353. 

5. Dubois D, Prade H. Fuzzy Sets and Systems: Theory and Applications. Academic 

Press; 1980. 

6. Ross TJ. Fuzzy Logic with Engineering Applications. 3rd ed. Wiley; 2010. 

7. Pedrycz W, Gomide F. Fuzzy Systems Engineering: Toward Human-Centric 

Computing. Wiley-IEEE Press; 2007. 

8. Venkatesh P, Ramachandran K. Robustness evaluation of complex systems using fuzzy 

fault tree analysis. Reliability Engineering & System Safety. 2018;174:94–104. 

9. Kandasamy J, Kumar R, Subramanian N. Fuzzy Bayesian network approach for 

reliability analysis of complex systems. Expert Systems with Applications. 

2018;95:160–173. 

10. Chen SM. A new approach to reliability analysis using fuzzy logic. Fuzzy Sets and 

Systems. 1996;81(2):277–288. 

11. Li X, Cao H. Hybrid fuzzy logic and machine learning for reliability assessment. IEEE 

Transactions on Systems, Man, and Cybernetics. 2020;50(3):934–944. 

12. Smith DN, Williams NR. Reliability and Maintainability Engineering. McGraw-Hill; 

2001. 

13. Dhillon BS. Engineering Maintainability: How to Design for Reliability and Easy 

Maintenance. Gulf Publishing; 2006. 

14. Billinton R, Allan RN. Reliability Evaluation of Power Systems. 2nd ed. Springer; 

1996. 



Corrosion Management      ISSN: 1355-5243 
(https://corrosion-management.com/) 
Volume 35, Issue 02 – 2025 
 

 

169 
1355-5243/© The Authors. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). 

SCOPUS 

15. Klir GJ, Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall; 

1995. 

16. Bakar AHA, Ismail Z. Fuzzy fault tree analysis of a gas turbine power plant. 

International Journal of Engineering & Technology. 2011;11(6):45–53. 

17. Tripathi A, Yadav R. Review on fuzzy fault tree analysis. International Journal of 

Engineering Science and Computing. 2019;9(4):3805–3810. 

18. Tanaka H, Guo P, Wang H. Fuzzy reliability and its application to reliability analysis. 

IEEE Transactions on Fuzzy Systems. 1996;4(3):317–324. 

19. Chen C-L, Patwardhan KA. Fuzzy logic in reliability modeling. IEEE Transactions on 

Reliability. 1997;46(3):337–341. 

20. Sharma A, Kumar R. Fuzzy Bayesian networks in fault diagnosis. Expert Systems with 

Applications. 2017;78:263–273. 

21. Saha P, Chatterjee S. Application of fuzzy logic in reliability engineering. International 

Journal of Engineering Research & Technology. 2015;4(12):370–374. 

22. Liang J, Miao Z. Fuzzy reliability analysis of complex systems based on fuzzy Bayesian 

networks. Applied Soft Computing. 2014;20:7–15. 

23. Yang X, Xu J. Fuzzy-based reliability assessment of complex systems. Reliability 

Engineering & System Safety. 2019;182:41–50. 

24. Pedrycz W. Fuzzy sets in reliability engineering. Fuzzy Sets and Systems. 1989 

 

 


